skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeter, Russell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundStroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods. ObjectiveOur main objective is to use kinematics data collected during in-home, self-guided therapy sessions to develop supervised machine learning methods, to address a clinician’s autonomous classification of stroke residual severity–labeled data toward improving in-home, robotics-assisted stroke rehabilitation. MethodsIn total, 33 patients who experienced a stroke participated in in-home therapy sessions using Motus Nova robotics rehabilitation technology to capture upper and lower body motion. During each therapy session, the Motus Hand and Motus Foot devices collected movement data, assistance data, and activity-specific data. We then synthesized, processed, and summarized these data. Next, the therapy session data were paired with clinician-informed, discrete stroke residual severity labels: “no range of motion (ROM),” “low ROM,” and “high ROM.” Afterward, an 80%:20% split was performed to divide the dataset into a training set and a holdout test set. We used 4 machine learning algorithms to classify stroke residual severity: light gradient boosting (LGB), extra trees classifier, deep feed-forward neural network, and classical logistic regression. We selected models based on 10-fold cross-validation and measured their performance on a holdout test dataset using F1-score to identify which model maximizes stroke residual severity classification accuracy. ResultsWe demonstrated that the LGB method provides the most reliable autonomous detection of stroke severity. The trained model is a consensus model that consists of 139 decision trees with up to 115 leaves each. This LGB model boasts a 96.70% F1-score compared to logistic regression (55.82%), extra trees classifier (94.81%), and deep feed-forward neural network (70.11%). ConclusionsWe showed how objectively measured rehabilitation training paired with machine learning methods can be used to identify the residual stroke severity class, with efforts to enhance in-home self-guided, individualized stroke rehabilitation. The model we trained relies only on session summary statistics, meaning it can potentially be integrated into similar settings for real-time classification, such as outpatient rehabilitation facilities. 
    more » « less
  2. null (Ed.)
  3. Abstract The pedestrian-induced instability of the London Millennium Bridge is a widely used example of Kuramoto synchronisation. Yet, reviewing observational, experimental, and modelling evidence, we argue that increased coherence of pedestrians’ foot placement is a consequence of, not a cause of the instability. Instead, uncorrelated pedestrians produce positive feedback, through negative damping on average, that can initiate significant lateral bridge vibration over a wide range of natural frequencies. We present a simple general formula that quantifies this effect, and illustrate it through simulation of three mathematical models, including one with strong propensity for synchronisation. Despite subtle effects of gait strategies in determining precise instability thresholds, our results show that average negative damping is always the trigger. More broadly, we describe an alternative to Kuramoto theory for emergence of coherent oscillations in nature; collective contributions from incoherent agents need not cancel, but can provide positive feedback on average, leading to global limit-cycle motion. 
    more » « less